Mass spectrometric analysis of the secretome of Candida albicans.
نویسندگان
چکیده
The pathogenic fungus Candida albicans secretes a considerable number of hydrolases and other proteins. In-depth studies of the C. albicans secretome could thus provide new candidates for diagnostic markers and vaccine development. We compared various growth conditions differing in pH, temperature and the presence of the hyphal inducer N-acetylglucosamine. The polypeptide content of the growth media was ca. 0.1-0.2% of the total biomass. Using LC-tandem mass spectrometry, we identified 44 secretory proteins, the transmembrane protein Msb2, six secretory pathway-associated proteins and 28 predicted cytosolic proteins. Many secretory proteins are wall-related, suggesting that their presence in the growth medium is at least partially due to accidental release from the walls. Als3, Csa2, Rbt4, Sap4 and Sap6 were enriched in the medium of hyphal cultures; Bgl2, Cht3, Dag7, Eng1, Pir1, Rbe1, Scw11, Sim1/Sun42, Xog1 and Ywp1 in the medium of yeast cells; and Plb4.5 in pH 4 medium. Seven proteins (Cht3, Mp65, Orf19.5063/Coi1, Scw11, Sim1, Sun41 and Tos1) were consistently present under all conditions tested. These observations indicate that C. albicans tightly regulates its secretome. Mp65, Sun41, and Tos1 were each predicted to contain at least one highly immunogenic peptide. In total, we identified 29 highly immunogenic peptides originating from 18 proteins, including two members of the family of secreted aspartyl proteases. Fifty-six peptides were identified as proteotypic and will be useful for quantification purposes. In summary, the number of identified secretory proteins in the growth medium has been substantially extended, and growth conditions strongly affect the composition of the secretome.
منابع مشابه
Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently foun...
متن کاملEffects of fluconazole on the secretome, the wall proteome, and wall integrity of the clinical fungus Candida albicans.
Fluconazole is a commonly used antifungal drug that inhibits Erg11, a protein responsible for 14α-demethylation during ergosterol synthesis. Consequently, ergosterol is depleted from cellular membranes and replaced by toxic 14α-methylated sterols, which causes increased membrane fluidity and drug permeability. Surface-grown and planktonic cultures of Candida albicans responded similarly to fluc...
متن کاملAntifungal activity of essential oils from Iranian plants against fluconazole-resistant and fluconazole-susceptible Candida albicans
Objectives: The purpose of this study was to assay the antifungal activity of selected essential oils obtained from plants against both fluconazole (FLU)-resistant and FLU-susceptible C. albicans strains isolated from HIV positive patients with oropharyngeal candidiasis (OPC). Materials and Methods: The essential oils were obtained by hydrodistillation method from Myrtus communis (My. communis)...
متن کاملChemical composition and antifungal effect of hydroalcoholic extract of Allium tripedale (Tvautv.) against Candida species
Background and Purpose: Treatment of life-threatening fungal infections caused by Candida species has become a major problem. Candida spp. are the most important causative agents of candidiasis. Allium tripedale is a medicinal plant that has been traditionally used to treat infections. In the present study, we aimed to determine the chemical compounds and antimicrobial activity of hydroalcoholi...
متن کاملAn isolated Candida albicans TL3 capable of degrading phenol at large concentration.
An isolated yeast strain was grown aerobically on phenol as a sole carbon source up to 24 mM; the rate of degradation of phenol at 30 degrees C was greater than other microorganisms at the comparable phenol concentrations. This microorganism was further identified and is designated Candida albicans TL3. The catabolic activity of C. albicans TL3 for degradation of phenol was evaluated with the K...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Yeast
دوره 27 8 شماره
صفحات -
تاریخ انتشار 2010